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Quenching of self-excited vibrations
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Abstract. Stable normal-mode vibrations in engineering can be undesirable and one of the possibilities for quenching
these is by embedding the oscillator in an autoparametric system by coupling to a damped oscillator. There exists the
possibility of destabilizing the undesirable vibrations by a suitable tuning and choice of nonlinear coupling parameters.
An additional feature is that, to make the quenching effective in the case of relaxation oscillations, one also has to
deform the slow manifold by choosing appropriate coupling; this is illustrated for Rayleigh and van der Pol relaxation.
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1. Introduction

Quenching of undesirable vibrations by energy absorption or exchange of energy can take differ-
ent forms. Apart from straightforward damping mechanisms, one can use autoparametric cou-
pling which we shall discuss here. The method is illustrated by a number of explicit examples,
in particular for coupling with the van der Pol and the Rayleigh equations. These equations, in
their uncoupled state, have solutions which can be transformed into each other. In their coupled
states, the equations again show similar behaviour with small quantitative differences.

A typical formulation for autonomous systems runs as follows. Consider a one-degree-
of-freedom oscillator, for example the van der Pol oscillator, described by the (2-dimensional)
system

x=f(x),

where f(x) is a smooth 2-dimensional vector field, and assume that the equation has a stable
periodic solution. Suppose that this corresponds with undesirable behaviour, as is often the case
for flow-induced vibrations. One can think of vibrations of overhead lines in a windfield or of
a movable dam in an estuary. Can we introduce a kind of energy absorber or, mathematically
speaking, can we couple the equation to another system such that this periodic solution arises
as an unstable normal mode in the full system? This would be a radical type of quenching.
In general, we will speak of “quenching of an oscillator” if the amplitude of the oscillator is
reduced. Sometimes this can be achieved by the introduction of the system

x=f(x)+gx,y), (1)
y=h(x,y), )
in which y is n-dimensional, g and 4 are smooth vector fields, with i(x,0)=0. In this case

system (1-2) is called autoparametric. In most cases, we also assume g(x,0)=0, so that the
original periodic solution corresponds with a normal mode of the coupled system. Sometimes
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g(x, y) includes a perturbation, resulting in a normal mode close to the unperturbed one. The

important questions are “what are the conditions for the frequencies of the coupled oscillators?”

and “what are the requirements for the coupling terms g and h to achieve effective destabilization

of the normal mode?” (or, more modestly, “reduction of the amplitude of the normal mode”).
Suppose ¢(7) :R— R? is a stable T-periodic solution of the equation

x=fx)+gx,0).

We shall study the stability of this normal mode or, alternatively, amplitude reduction, in sys-
tem (1-2).

A general characterization of autoparametric systems is given in [1, pp. 1-4], see also [2,
Chapter 12] and [3]. The autonomous character of the system (1-2) that we have chosen here,
is not essential. A number of important problems of quenching involve external or parametric
excitation.

Two fundamental aspects play a part in the analysis of these problems. First, there is the
necessity of correct tuning of the coupled oscillators to create the appropriate resonance con-
ditions. Autoparametric vibrations, resulting in possible destabilization of the normal mode,
occur only in a limited region of the tuning parameters. Second we have to choose suitable
nonlinear coupling terms, the expressions g(x, y) and h(x, y), to realise this destabilization by
the mechanism of resonance. In this paper we will emphasize the second problem.

Our examples will be concerned with quenching of self-excited oscillations where we have
introduced a small parameter. The analysis depends on the nature of the interaction: weak
or strong. In the case of weak interaction we can employ the usual normal-form techniques
which take the form of averaging or multiple timing. Strong interaction takes place in a self-
excited autoparametric system with a relaxation oscillator. It turns out that, to destabilize
relaxation oscillations, one needs, apart from correct tuning, rather strong interactions of a
special form. This is tied in with the necessity to perturb the slow manifold which character-
izes to a large extent the relaxation oscillation. Some of the results in this paper are discussed
in more detail in [4].

2. Weak coupling of self-excited oscillations

We start by making some observations on weak self-excitation and weak interaction. We shall
express the size of the interaction by using the small, positive parameter ¢. Consider self-
excited vibrations in the form of flow-induced vibrations as illustrated in Figure 1. Such phe-
nomena are difficult to model and quite often one simply represents such excitation by using
a Rayleigh or van der Pol oscillator. We will consider these two cases.

2.1. COUPLING OF RAYLEIGH VIBRATIONS

Consider the case of flow-induced vibrations represented by the Rayleigh oscillator embedded
in the autoparametric system

X+x=¢e(l —)'cz))'c +e(clx2 +czxy+C3y2),
§+eky+qy=ey(dix +doy).

Putting y =0, we obtain a normal-mode solution of the system, which is a periodic solution
¢ (t) of the equation

it+x=ce(1 —x%)x +ecix?,

a modified Rayleigh oscillator.
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Figure 1. Example of an autoparametric system with
flow-induced vibrations. The system consists of a sin-
gle mass on a spring to which a pendulum is attached
as an energy absorber. The flow excites the mass and
the spring but not the pendulum.
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Figure 2. The solution y(f) of the equation
ey = —xy(l — y),y(0) = 05 with x(¢) = sint which
starts being attracted to the slow manifold y = 0.
Although the stability between the slow manifolds
y =0 and y = 1 changes periodically, exponential

sticking delays the departure from y=0 and produces
spike behaviour; ¢ =0-01.

The damping coefficient « is positive, the frequency ¢ and the coefficients ¢;, d; will be
chosen suitably, i.e., to provide optimal instability of the normal mode ¢ (). The T-periodic
solution ¢(¢) corresponds with self-excited vibrations and we linearize around this normal
mode, putting x =¢ () +u, y=y, to find:

i+u=e(1-3¢p")Mi+eQc1¢p)u+cr(t)y),
§+eky+qly=edig(n)y.

The equation for y is Hill’s equation with damping added, which can be reduced to Mathieu’s
equation by using that ¢ is small. It is well known that for the periodic solution of the mod-
ified Rayleigh oscillator we have the approximation

¢ (1) =2cos(t) + O(e).

The estimate for the approximate solution is valid on the timescale 1/¢, the estimate for the
amplitude and period is valid for all time. Inserting the approximation into the equation for y
yields

¥ +eky+(g° —2ed; cos(t))y =0.

In parameter space, a relatively large instability domain arises on choosing g = % The usual
analysis (Poincaré-Lindstedt, averaging or harmonic balance) leads to the (known) require-
ment |d;| > %K for instability of y=0 (see for instance [5]).

We conclude that, on choosing g = %, dy > %K, the solution y =0 becomes unstable which
destabilizes the normal mode in the y-direction. On choosing c¢; # 0, the solution u =0
also becomes unstable which enforces the instability of the normal mode. The parameters
c1, ¢3, dr play no part at this level of approximation.

Note that Abadi [6] studied this autoparametric system for ¢; =c¢; =d, =0 with emphasis

on the bifurcation phenomena in the case of an unstable normal mode.
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2.2. COUPLING OF VAN DER POL VIBRATIONS

There is a strong relation between the solutions of the Rayleigh equations and the van der
Pol equation, so we do not expect much change when replacing Rayleigh self-excitation by
van der Pol self-excitation. Still, we have to check whether there are small differences. The
system becomes

X+x=¢e(l —xz)x —i—s(clx2 +coxy +C3y2),
§+exy+qly =ey(dix +day).

Note, however, that there is a difference in the Lyapunov exponents of the normal modes in
these cases. For the unperturbed Rayleigh oscillator the Lyapunov exponents are 0 and, with
the approximation ¢ (1) =2cos(r) + O(g), A =—5¢ + O(¢?). For the unperturbed van der Pol
oscillator we have 0 and A =—&+ O(e?), which implies slightly weaker attraction to overcome.
On the other hand, the linearized equation for y does not change, leading to the same param-
eter conditions for instability of y=0 as in the case of the coupled Rayleigh oscillator.

3. Coupling with relaxation oscillations

Destabilization of relaxation oscillations is not so easy, and in these cases we will be con-
tent with quenching by reduction of the relaxation amplitude. For understanding and han-
dling relaxation oscillations, geometric singular perturbation theory and slow manifolds are
basic. We start with an introduction to this topic.

3.1. INTERMEZZO ON SLOW MANIFOLDS

A different problem arises when we wish to quench a relaxation oscillation, i.e., when we wish
to reduce its amplitude(s). A relaxation oscillation is characterized by time-intervals with slow
and fast motion; for the tuning we have to consider the timescale of the period of relaxation
which is long with respect to a suitable small parameter. For instance, for the van der Pol
equation,

4 x=p(l—xHi, >0,

we have the estimate

T,=03-2log2)n+0 <L1> as . — oo.
M?
We will use results on relaxation oscillators which were summarised and extended by Gras-
man [7, Section 2.2]. We will discuss the nonlinearities by using results on slow manifolds
in geometric singular perturbations; for introductions see [8], [9, Section 8.5] or the original
papers by Fenichel [10-13].
Consider the autonomous system

x=fx,y)+e---, xeDCR",
ey=gx,y)+e--- yeGCR™.

Note that the van der Pol equation with x>0 would be represented here by the y-variable.
In this context one often transforms ¢t — t =1¢/¢ so that

x'=¢ef(x,y)+€2---, xeDCR",
V=g, y)+e--- yeGCR"

where the prime denotes differentiation with respect to t.
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In both these systems, with time variable ¢+ and time variable 7, we call y the fast vari-
able, x the slow variable. The zero set of g(x,y) is obtained from the equation g(x,y)=0
and given by y=1(x), which in this autonomous case corresponds with a first-order approx-
imation My of the n-dimensional (slow) manifold M, in phase space. The flow on M, is to a
first approximation described by x = f(x, ¥ (x)).

In geometric singular perturbation theory, for which Fenichel’s results are basic, it is suffi-
cient to assume that all real parts of the eigenvalues of the matrix

gy(x,¥(x)),xeD,

are nonzero. Note that this requirement holds uniformly for x € D or in subsets of D. In
this case the slow manifold M, is called normally hyperbolic. A manifold is called hyper-
bolic if the local linearization is structurally stable (real parts of eigenvalues all nonzero), it
is normally hyperbolic if, in addition, the expansion or contraction near the manifold in the
tranversal direction is larger than in the tangential direction (the slow drift along the slow
manifold).

One might approach M, for instance by a stable branch, stay for some time near M., and
then leave again a neighbourhood of the slow manifold by an unstable branch. This produces

solutions indicated as “pulse-like”, “multi-bump solutions”, etc. This type of exchanges of the
flow near M, is what one often looks for in geometric singular perturbation theory.

3.1.1. Existence of the slow manifold
The question whether the slow manifold M, approximated by y =1 (x) persists for ¢ >0 was
answered by Fenichel. The main result is as follows: If Mj is a compact manifold which is
normally hyperbolic, it persists for ¢ > 0, i.e., there exists for sufficiently small, positive ¢ a
smooth manifold M, close to M. Corresponding with the signs of the real parts of the ei-
genvalues, there exist stable and unstable manifolds of M., smooth continuations of the cor-
responding manifolds of My, on which the flow is fast.

There are some differences between the cases that My has a boundary or not. For details
see [8, 14] and the original papers. It may surprise the reader that such subtleties have prac-
tical consequences as we shall briefly discuss.

3.1.2. The compactness property

Note that the assumption of compactness of D and G is essential for the existence and
uniquess of the slow manifold. In many examples and applications My, the approximation of
the slow manifold obtained from the fast equation, is not bounded. This can be remedied,
admittedly in an artificial way, by applying a suitable cut-off of the vector field far away from
the domain of interest. In this way, compact domains arise which coincide locally with D and
G. However, this may cause some problems with the uniqueness of the slow manifold, as is
shown in the following example.

Example. Consider the system

x=1,x(0)=xp>0,
v

8)';:_»_ s)’(o):)’o

x2
Putting ¢ =0 produces y =0, which corresponds with My; this is an (unbounded) part of the
x-axis: x >xg. We can obtain a compact domain for My by putting xo <x <L with L a posi-
tive constant, independent of . However, the limiting behaviour of the solutions depends on
the initial condition. Integration of the equations yields
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1 1 1
y(t) =yoexp (g <xo+t - x_0>> .

As ¢ increases, the solution for y(¢) tends to

1
Yo exp (——) .
EX(

So, after an initial fast transition, the solutions are all exponentially close to y=0. There are,
however, an infinite number of slow manifolds dependent on xg, all tunnelling into this expo-
nentially small neighbourhood of M, given by y=0.

One might wonder about the practical use of exponential closeness, as such solutions can-
not be distinguished numerically. The phenomenon is important and of practical use, when
there is a change of stability, a bifurcation of the slow manifold. When a solution jumps off
a slow manifold, exponentially close orbits may take some time to get away from the slow
manifold, which became unstable. This interval of time is dependent on how close the solu-
tions were to the stable part of the slow manifold. For explicit examples see [9, Chapter §].

3.1.3. Jumping phenomena

Other interesting phenomena take place when the solutions jump repeatedly from one mani-
fold to another, non-intersecting one. This may give rise to periodic solutions or oscillations
with fast and slow motions. The classical example is the van der Pol relaxation equation; we
present a more explicit case showing jumping phenomena.

Example. Consider the system

x=f(x,y),
ey=—xy(I—y).

We assume that the equation for x contains oscillatory solutions; as an illustration we replace
it by an explicit function, sin¢. The slow manifolds are y =0 and y =1 with eigenvalues
respectively —x and x.

Choosing periodic behaviour of x, we find spike-like relaxation behaviour as shown in
Figure 2.

3.2. COUPLING WITH RAYLEIGH RELAXATION

We embed the Rayleigh oscillator in an autoparametric system of the form

Ftx=p(—15)x+pF(x, 1,9, 9),
F+ey+g’y=yG(x, &, y, ),

where « is a positive damping coefficient. We assume that, if the (y, y)-vibration is absent, F
vanishes to produce a pure van der Pol relaxation oscillation: F(x, x,0,0)=0. The functions
F and G, and the remaining parameters have to be chosen to produce instability of the (peri-
odic relaxation) normal mode, obtained by putting y =0 in the case p > 1. To fix ideas, we
shall later assume that F and G are polynomials in their arguments.

Differentiation of the first equation produces

e N drF
X +x=u(l—x )X+ME

and, putting x =w,
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. 2 . dr
w4w=pu(l —wHw+u—,
dr
we obtain the perturbed van der Pol equation. To analyze the standard van der Pol equation,

it is efficient to use Liénard’s transformation. Putting 1/u =¢, we generalize this transforma-
tion to obtain the following equivalent system

8w=z+w—%w3+F(x,w,y,y'),
z=—¢w,
X=uw,
J+Ky+q*y=yGx, w,y, ).
To first approximation the slow manifold is given by
z:—w+%w3—F(x,w,y,y).

The slow manifold is stable if
1—w?+ E <0
ow
and unstable when the expression is positive on the slow manifold. During the stable phase
the oscillations will follow the stable manifold, while during the transition to an unstable
phase the orbits leave the stable manifold in fast motion. This results in higher-dimensional
relaxation oscillations. Choosing explicitly

F(x,%,y,9)=criy+caxiy +c3iy?, A3)

we find for the first approximation to the slow manifold

3

z=—w+ %w —clwy —czxwy—C3wy2,

which is stable if
1 —w2+c1y+czxy+63y2 <0.

Quenching of the Rayleigh oscillator has been achieved if there is a reduction of the (x, x)
amplitudes when comparing pure and perturbed Rayleigh oscillations.

3.3. COUPLING WITH VAN DER POL RELAXATION

For comparison we consider the van der Pol relaxation oscillator embedded in an autopara-
metric system of the form

X+x=pu(l —xZ)X+F(X,X,y,§7),
4y +q*y=yG(x, 1, y,¥),

where « is again a positive damping coefficient. We assume that if the (y, y)-vibration is
absent, F vanishes to produce a pure van der Pol relaxation oscillation: F(x,x,0,0)=0. We
follow the analysis of [4].

Again, the functions F and G, and the remaining parameters have to be chosen to pro-
duce instability of the (periodic relaxation) normal mode, obtained by putting y =0 in the
case u>> 1. In the case (y, y)=(0,0) we have pure van der Pol relaxation which is illustrated
in Figure 3. To analyse the relaxation oscillation and to be more explicit, we assume that the
interaction term F contains quadratic and cubic terms only and is again of the form (3). As
an illustration we choose for the attached (y) oscillator G =dx.
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Figure 3. The phase plane of pure van der Pol Figure 4. A periodic limit set of system (4-5) for
relaxation. The slow manifold is approximated u=10, ¢=-22, d =003, ¥« =0075 with high
by a cubic curve, fast motion is indicated by starting values of the y-oscillation, projected on
double arrows. the x-x plane. The dotted orbit corresponds with

the unperturbed van der Pol relaxation oscillation.
In the perturbed state the slow manifolds are
reduced and the limit cycle becomes asymmetric.
SM is the stable part of the slow manifold.

We generalize the Liénard transformation (x, x)— (x, z) for this problem to

1.
;x:z+x — %x3 +cixy+ %c2x2y+63xy2,

z= —%x —c1xy — %czxz)'z —2c3xyy.
The slow manifold is given by

Z=—Xx+ %x3 —C1Xy — %czxzy — C3xy2.
It is stable if

1 —x2+cly+czxy+03y2 <0

and unstable if the expression is positive. The c3-term is semi-definite, which is important as
far as stability is concerned. So, we choose this term for our model of destabilisation of the
relaxation oscillation. Replacing c¢3 by ¢, we have the system

4 x=pu(l —x3)x + pcxy?, (4)
¥+K3+q’y=dxy. )

In generalised Liénard variables this becomes

—Xx=z+x— %x3+cxy2,
n

1
z=——x—2cxyy,
"
with the equation for y added. The slow manifold is given by

z=—(1 ~|—cy2)x+ %x3,
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which is unstable if 1+ cy? —x?> 0. The slow manifold corresponds with a 3-dimensional
cubic cylinder parallel to the y-axis.

As a numerical illustration for the behaviour of the dynamics of system (4-5), we present
a projection of the limit set on the (x, x)-plane (so the transients were left out) in Figure 4.
For more numerical experiments see [4].

4. Discussion

Quenching of nonlinear oscillations is of considerable practical and mathematical interest. In
the case of weak interaction between two oscillators within an autoparametric system, the
theory is not complete, but extensive results are available (see the references). In the case of
strong interactions, as is the case for coupled relaxation oscillators, the results are still very
restricted. Geometric singular perturbation theory, involving fast-slow motion and slow man-
ifolds, can be very helpful in these problems.

An important conclusion is that, to quench relaxation oscillations, apart from the usual
tuning conditions, we have to choose the interaction such that strong deformation of the slow
manifolds is possible. The conditions for stability/instability in the cases of Rayleigh and van
der Pol relaxation look similar but are not identical.

When the normal-mode relaxation oscillation is destabilized, the dynamics of the coupled
system is largely unexplored. It is clear, however, that periodic, quasiperiodic and chaotic limit
sets are possible. More analysis and experiments are needed to understand these phenomena
both qualitatively and quantitatively.

Interesting for exploration are the cases where the x-oscillator (1) that has to be quenched,
has more dimensions than two and contains multifrequency oscillations. An extreme case
arises if we replace Equation (1) by a wave equation. These problems are open for new
research.
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